| BITY CLASSIFICATION OF THIS PAGE | UNCLASSIFIED | | | | (2 | |-----------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|---------------------|--------------------------|-----------------| | . D | REPORT-DOCUME | NTATION | AD / | 1220 | 176 | | | 1 6 1991 | 16. RESTRIC<br>N/A | AU-A | <b>1238</b> 1 | | | ECURITY CLASSIFICATION AUTHORITY | | Approved f | I MERITI INC. NO. | release, dis | 1 | | DECLASSIFICATION/DOWNGRADING SCHE | DU 6. | unlimited. | - | | | | N/A ERFORMING ORGANIZATION REPORT NUM | 050/5) | S. MONITORING OR | CANIZACION O | | | | Technical Report No. 9 | | | ioanization Ri | EPORT NOMBERIA | " | | IAME OF PERFORMING ORGANIZATION Iniversity of California, (If applicable) Berkeley | | 7a. NAME OF MONITORING ORGANIZATION Office of Naval Research | | | | | ADDRESS (City, State and ZIP Code) | | 76. ADDRESS (City, | State and ZIP Cod | le) | | | Chemistry Dept. Iniversity of California Berkeley, CA 94720 | ; | 800 N. Qui<br>Arlington, | ncy St.<br>VA 22217 | • | | | IAME OF FUNDING/SPONSORING<br>PREANIZATION<br>Office of Naval Research | 8b. OFFICE SYMBOL<br>(If applicable) | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NOO14-87-K-0495 | | | | | IDDRESS (City, State and ZIP Code) | 10. SOURCE OF FUNDING NOS. | | | | | | 300 N. Quincy St.<br>Arlington, VA 22217 | | PROGRAM<br>ELEMENT NO. | PROJECT<br>NO. | TASK<br>NO. | WORK UNIT | | TITLE (Include Security Completation) [hreshold photodetachment spe | ectroscopy of C <sub>5</sub> | n · | | | | | T. N. Kitsopoulos, C. J. Chi | · | | | | | | Interim Technical FROM 5/ | OVERED<br>1/91 TO 7/1/91_ | 14. DATE OF REPOR | RT (Yr., Mo., Day) | 15. PAGE C | OUNT | | Submitted for publication | | of Chemical Ph | nysics | 1 14 | | | COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) | | | | | | | LD GROUP SUB. GR. | 1 | ers, photodeta | | | | | | | , , , , , , , , , , , , , , , , , , , , | | | | | The threshold photodetach observed transitions to the vibrational structure has a the negative ion. | nment spectrum of | f C <sub>5</sub> has been<br>ow-lying excit | ed state of | f C <sub>5</sub> . Resol | .ved<br>.n | | ; . | | | | | | | ٠. | | | | | | | HISTRIBUTION/AVAILABILITY OF ABSTRA | CT | 21. ASSTRACT SEC | | CATION | | | LASSIFIED/UNLIMITED 🗗 SAME AS RPT. 🗆 DTIC USERS 🗆 | | Unclassified | | | | | NAME OF RESPONSIBLE INDIVIDUAL | <del>,</del> | 225. TELEPHONE N | | 22c. OFFICE SYM | | | Dr. David L. Nelson | | (202) 696-44 | | | | | FORM 1473, 83 APR | EDITION OF 1 JAN 73 | S OSSOLETE. | UNC | LASSIFIED | | | • | | 10 | SECURI | TY CLASSIFICATI | ON OF THIS PAGE | 91 113 ### OFFICE OF NAVAL RESEARCH Contract # N0014-87-K-0495 R&T Code 400X026 Technical Report No. 9 Threshold Photodetachment Spectroscopy of C5 by T. N. Kitsopoulos, C. J. Chick, Y. Zhao, and D. M. Neumark Submitted for publication in The Journal of Chemical Physics Department of Chemistry University of California Berkeley, CA 94720 July 1, 1991 | Aces | saion For | | |------|------------------------|------| | MTI: | GRALL<br>Teb | N. | | | no-weed<br>If lost ton | | | Sy | | | | | tbution/ | 0408 | | Dist | Avail and/<br>Special | er | | 1-6 | | | | , , | | | Reproduction in whole, or in part, is permitted for any purpose of the United States Government. This document has been approved for public release and sale: its distribution is unlimited. ### Threshold photodetachment spectroscopy of Cs T.N. Kitsopoulos, C.J. Chick<sup>a)</sup>, Y. Zhao and D.M. Neumark<sup>b)</sup> Department of Chemistry, University of California at Berkeley Berkeley, California 94720 The importance of carbon clusters in astrophysics and combustion has made them the focal point of intense experimental effort. Carbon clusters come in all shapes and sizes, from linear chains and closed ring structures, to spheroidal fullerenes like $C_{60}$ . The spectroscopy of these intriguing species has been reviewed by Weltner and Van Zee. Although a great deal of progress has been made in understanding the physical and chemical properties of these clusters there remain many unanswered questions concerning the nature of the electronic, vibrational and rotational structure of these species. Over the years negative ion photoelectron spectroscopy (PES) has offered a very promising technique for studying clusters. $^{2,3,4,5}$ The first ultraviolet photoelectron spectra for carbon clusters $C_{n=2-29}^{-}$ , were obtained by Smalley and co-workers at a resolution of about 1000 cm<sup>-1</sup>, which allowed electronic bands to be mapped out but no vibrational progressions. More recently, Arnold et al. have obtained vibrationally resolved photoelectron spectra of $C_{n=2-11}^{-}$ at a resolution of about 100 cm<sup>-1</sup>. This <sup>\*</sup> NSF Predoctoral Fellow. b NSF Presidential Young Investigator and Alfred P. Sloan Fellow. resolution is comparable to the lowest vibrational frequencies for these clusters, and not all features in the spectra were cleanly resolved. In this Communication, we report a considerably higher resolution (6-10 cm<sup>-1</sup>) photodetachment study of $C_5^-$ using threshold photodetachment spectroscopy.<sup>8,9</sup> We observe considerably more vibrational structure than in the $C_5^-$ photoelectron spectrum and obtain evidence for a low-lying excited electronic state of $C_5$ . The threshold photodetachment spectrometer used in this study is described in detail elsewhere. \$\frac{8}{10}\$ A beam of cold anion carbon clusters is generated in a laser vaporization/pulsed molecular beam source and is mass-selected using time of flight. The cluster of interest is then photodetached using a excimer-pumped tunable dye laser operating at 20 Hz, and electrons with near zero kinetic energy (ZEKE) are collected as a function of photon energy. The selective detection of the ZEKE electrons is done using the method developed by Muller-Dethlefs et al. In the spectra shown here, the electron signal was averaged for 1000 laser shots at each wavelength and normalized to both the laser power and the ion current. Four different laser dyes were utilized to obtain the Cs-spectrum: Stilbene 3 (418 nm - 440 nm), Exalite 416 (408 nm - 427 nm), DPS (397 nm - 414 nm) and BiBuQ (375 nm - 400 nm). Figure 1(a) shows the $C_5^-$ threshold photodetachment spectrum in which the cluser beam was seeded in UHP helium; Figure 1(b) shows a smaller region of this spectrum taken with neon as the seed gas. Two types of peaks appear in Figure 1(a): peaks a - F are all between 10 and 30 cm<sup>-1</sup> wide, while a series of broader peaks (FWHM ~ 100 cm<sup>-1</sup>) appears at slightly higher energy. The two sets of peaks are labelled bands X and a, respectively. Peaks in each band represent transitions between vibrational levels of $C_5^-$ and $C_5$ . The peaks in band X can be further grouped together according to their shape: peaks a, A, D, and E which are doublets split by 22 cm<sup>-1</sup>, and peaks b, b, c, c and d which are single peaks about 30 cm<sup>-1</sup> wide. Band X is the lowest energy band observed and presumably results from transitions betweem the ground electronic states of the anion and neutral cluster. It is dominated by peak A, which is assigned to the $C_5(v'=0) \leftarrow C_5(v''=0)$ vibrational transition. dominance of a single peak implies a small geometry change between the anion and the neutral cluster. Several high resolution infrared experiments12,13,14 have determined the structure of C, to be linear, in agreement with the prediction of Pitzer and Clementi, 15 and our spectrum indicates C<sub>5</sub> is linear as well. mentioned above, peak A is actually two peaks separated by 22 cm<sup>-1</sup>. Molecular orbital considerations show that $C_5$ has a ${}^1\Sigma_a$ ground state and that the LUMO in $C_5$ is a $\pi_u$ orbital, so $C_5^-$ is expected to have a $\Pi_{i}$ ground state. We assign the 22 cm<sup>-1</sup> splitting to the spltting between the $\Pi_{1/2}$ and $\Pi_{3/2}$ spin-orbit levels of the $C_5^{-2}\Pi_1$ state. The smaller A2 peak observed at higher wavelength originates from the excited $\Pi_{3/2}$ level and is less intense because the population of this level is lower in our cold ion beam. Based on the intensity ratio $A_2/A_1$ , we obtain a 'spin-orbit temperature' of 60 K for the He seeded beam and 30 K for the Ne seeded beam. The transition energy of the larger $A_1$ peak, 2.854 $\pm$ 0.001 eV, is the electron affinity of $C_5$ . Considering the other peaks in band X, we find that intensities for peaks a, b, and c vary considerably with the ion source conditions and we assign them to 'hot bands' originating from vibrationally excited $C_5^-$ . These hot band transitions are absent from the 1b spectrum suggesting, in accordance with the spin-orbit temperatures, that the clusters seeded in Ne expansions are colder than those seeded in He. The remaining peaks are transitions from $C_5^-(v^*=0)$ to vibrationally excited $C_5$ . Their assignments, listed in Table I, are aided by ab initio calculated vibrational frequencies16 and the infrared absorption work on C, by Amano and co-workers. We observe transitions to the v' = 1 level of the $V_2$ symmetric stretch and to the v' = 2 levels of the $V_5$ , $V_6$ , and $v_7$ bending modes (since the bending modes are not totally symmetric, only transitions to even levels from the $v^* = 0$ anion level can occur<sup>17</sup>). We obtain the following $C_5$ vibrational frequencies: $v_2 = 779 \text{ cm}^{-1}$ , $v_5 = 216 \text{ cm}^{-1}$ , $v_6 = 535 \text{cm}^{-1}$ , $v_7 = 106 \text{ cm}^{-1}$ . These agree reasonably well with the ab initio frequencies of Raghavachari and Binkley16 scaled by a factor of 0.89, the suggested correction factor for Hartree-Fock calculations. 18 From the hot band positions in our spectrum, we can attempt to learn about the vibrational frequencies of $C_5$ . Assuming the spin orbit temperature of 60 K in Figure 1a is representative of the anion vibrational temperature, then, based on Raghavachari's recent calculation of the $C_5$ vibrational frequencies, <sup>19</sup> only the lowest frequency vibrational mode will have non-negligible excitation. This is the $\mathbf{v}_7$ $\mathbf{\pi}_u$ bending mode, the frequency of which is calculated to be 162 cm<sup>-1</sup>. <sup>20</sup> In our C<sub>5</sub> spectrum the 0 $\leftarrow$ 0 transition is by far the most intense, so we expect the largest hot band, peak a, to correspond to a $\mathbf{v}_7'=1 \leftarrow \mathbf{v}_7''=1$ transition. Peaks a and b are separated by twice the frequency of the $\mathbf{v}_7$ mode in C<sub>5</sub>. We therefore assign peak b to the $\mathbf{v}_7'=3 \leftarrow \mathbf{v}_7''=1$ transition. Peak a is located 94 cm<sup>-1</sup> to the red of A from which we find $\mathbf{v}_7=200$ cm<sup>-1</sup> for C<sub>5</sub><sup>-</sup>. This value is close to but somewhat higher than the *ab initio* value. An interesting feature of band $\mathbf X$ is that the peak shapes vary considerably. Peak E, which corresponds to a transition involving the totally symmetric $\mathbf V_2$ mode, is a doublet, split by the energy difference between the ${}^2\Pi_{1/2}$ and ${}^2\Pi_{3/2}$ anion spin orbit states. In contrast, peaks B, C, and F appear as singlets; each of these peaks corresponds to a transitions to the $\mathbf v'=2$ level of a degenerate bending mode of $C_5$ . The width of these peaks is about $30 \pm 10 \, \mathrm{cm}^{-1}$ and is considerably larger than the instrumental resolution under which the spectrum was obtained. We believe these peaks consist of closely spaced overlapping transitions and offer the following explanation. For a linear molecule such as $C_5$ in a $^1\Sigma_g^+$ electronic state, the excitation of 2 quanta in a degenerate vibrational mode results in two states of symmetry $\Sigma$ and $\Delta$ with vibrational angular momentum I = 0 and 2, respectively. These are degenerate for a two dimensional harmonic oscillator, but anharmonicity can remove this degeneracy. If the splitting of these vibrational levels in $C_5$ is comparable to the spin orbit splitting in $C_5$ , then the $v'=2 \leftarrow v"=0$ photodetachment transition could be composed of two overlapping pairs of transitions, namely the $\Sigma \leftarrow {}^2\Pi_{1/2,3/2}$ and $\Delta \leftarrow {}^2\Pi_{1/2,3/2}$ transitions, yielding a single broad feature in the spectrum. The second pair of transitions (to the $C_5$ $\Delta$ state) is allowed only if there is vibronic coupling in the anion. The extent of this coupling is unknown, but we note that similar (although not identical) effects have been seen in the in the ${}^2\Sigma \leftarrow {}^2\Pi$ electronic absorption spectra of NCO, ${}^{22}$ BO<sub>2</sub>, ${}^{23}$ and the ${}^1\Sigma \leftarrow {}^1\Pi$ absorption spectrum of $C_3$ . Further insight into the nature of the vibrational levels of C<sub>5</sub> is provided by the intensity and shape of peak D. This peak is assigned to the transition to the $2v_7 + 2v_5$ level of $C_5$ on the basis of its position. However, this peak is nearly as intense as peaks B and C, which are transitions to the $2v_7$ and $2v_5$ vibrational levels, respectively, whereas a simple normal mode picture would lead one to expect a combination band such as peak D to be considerably less intense. One possible explanation of the anomalous intensity is the assignment of this peak to a Fermi type resonance; 25 the component of the $2v_7 + 2v_5$ level with $\Sigma$ symmetry and vibrational angular momentum l = 0 can interact with the nearby $v_2 = 1$ symmetric stretch level, and peak D therefore borrows intensity from peak E, the $v' = 1 \leftarrow v'' = 0$ transition. Peak D is a doublet split by 22 cm<sup>-1</sup>, the anion spin-orbit splitting, indicating that only transitions to a single C5 vibrational state are occurring. This is consistent with the idea of a Fermi resonance in which only transitions to the l=0 component of the $2v_7 + 2v_5$ level borrow intensity. Hence unlike peaks B, C, and F, peak D appears as a doublet, rather than an unresolved quartet. In Figure 1a, we observe a second band labeled a at higher energy than band X. The peaks are noticeably broader in band a, and the most prominent peaks (G, H, I) do not appear to be transitions to vibrationally excited levels of the $C_5$ ground electronic state. Instead, band a appears to be a transition to an excited electronic state of $C_5$ . If this state is linear, one can speculate on its nature by considering the molecular orbitals of C<sub>5</sub> and C<sub>5</sub>. The valence molecular orbital configuration for $C_5^-$ is $\sigma_q^2 \sigma_u^2 \pi_q^4 \pi_u^1$ . Removal of an electron from the HOMO $(\pi_{\scriptscriptstyle u})$ yields the $X^{\scriptscriptstyle 1}\Sigma_{\scriptscriptstyle q}^{\ \scriptscriptstyle +}$ ground electronic state of C<sub>5</sub>. Similarly, the removal of other electrons will result in the formation of excited neutral electronic states. As we have discussed elsewhere, 8,10 in threshold photodetachment spectroscopy only observe transitions which involve we can photodetachment, where the orbital angular momentum of the ejected electron is zero. Reed et al.26 have shown that for D symmetry, s-wave photodetachment occurs only when the photoelectron is detached from either a $\pi_u$ or $\sigma_u$ orbital. Hence, if band a is a transition to a linear excited electronic state, it must involve the removal of a $\boldsymbol{\sigma}_{\!\scriptscriptstyle u}$ electron. The lowest state from the resulting $\sigma_{\!_{q}}{}^{2}\sigma_{\!_{u}}{}^{1}\pi_{\!_{q}}{}^{4}\pi_{\!_{u}}{}^{1}$ configuration is the $a^{3}\Pi_{\!_{q}}$ state. This assignment offers a qualitative explanation of the broad peaks in band a. Assuming Hund's case (a) coupling, the $a^3\Pi_a$ state will split into three spin orbit components; all 6 possible transitions from the $^{2}\Pi_{u}$ anion state are allowed and should occur. If the magnitude of the spin orbit splitting in the $^{3}\Pi_{g}$ state is such that adjacent $^{3}\Pi_{0,1,2} \leftarrow ^{2}\Pi_{1/2,3/2}$ transitions are too close in energy to be resolved, the six transitions will appear as an unresolved single peak, in agreement with our spectrum. On the other hand, the vibrational structure in band a, while not assigned, looks more complex than expected for a linear anion $\rightarrow$ linear neutral transition. In addition to the major peaks G, H, and I, we observe an extended progression of smaller peaks with an average separation of 200 $\pm$ 50 cm<sup>-1</sup>. Another point to consider is that an *ab initio* MRD CI calculations by Pacchioni and Koutecký<sup>27</sup> on linear excited electronic states of $C_5$ found the ${}^3\Pi_g$ state to lie 2.56 eV higher than the ${}^1\Sigma_g{}^+$ state, whereas band a begins about 0.26 eV above band a in our spectrum. Whether this substantial discrepancy arises from inaccuracies in the calculation or from an incorrect interpretation of our spectrum remains to be seen. Another explanation of the peaks in band ${\bf a}$ is that they result from autodetachment from a metastable excited electronic state of $C_5$ . Recently, Adamowicz<sup>28</sup> has predicted the existence of such a state 3.08 eV above the $C_5$ ground state and is optically accessible (a ${}^2\Sigma_g$ state with configuration $\sigma_g{}^2\sigma_u{}^1\pi_g{}^4\pi_u{}^2$ ). The predicted energy is right in the middle of band ${\bf a}$ . However, there are two reasons we believe band ${\bf a}$ is not due to autodetachment. First of all, the major peaks in band ${\bf a}$ do appear in our lower resolution photoelectron spectrum, although the intensity of these peaks is higher in the threshold spectrum. Secondly, electrons generated by the decay of an autodetaching anion state are, in general, going to have more than $10~{\rm cm}^{-1}$ of kinetic energy and are normally discriminated against by our detection scheme. To check for autodetachment we collected <u>all</u> the electrons generated by the photodetachment, but no structure was observed in the region of band a. We therefore believe band a is from direct detachment to an excited state of $C_5$ , but the nature of this state is open to question. In conclusion, we have obtained the vibrationally resolved threshold photodetachment of $C_5^-$ , and have presented a preliminary assignment which explains many of the features in our spectrum. Further analysis which involves modelling the potentials for both the $C_5$ and $C_5^-$ ground and excited electronic states is necessary. We hope that our results will prompt more detailed theoretical work which will help us with our analysis. This report demonstrates that threshold photodetachment spectroscopy is a powerful technique for studying polyatomic clusters. We have recently obtained the threshold photodetachment spectra for other carbon clusters and will report on this in the near future. This research is supported by the Office of Naval Research under Contract No. N0014-87-0495. We thank Krishnan Raghavachari for unpublished results on $C_5^-$ . #### References - 1. W. Weltner, Jr. and R.J VanZee, Chem. Rev. 89, 1713 (1989). - 2. J. Ho, K.M. Ervin, and W.C. Lineberger, J. Chem. Phys. **94**, 3670 (1991). - 3. L.A. Posey, M.J. Deluca, and M.A. Johnson, Chem. Phys. Lett. 131, 170 (1986); L.A. Posey and M.A. Johnson, J. Chem. Phys. 88, 5383 (1988). - 4. K.M. McHugh, J.G. Eaton, G.H. Lee, H.W. Sarkas, L.H. Kidder, J.T. Snodgrass, M.R. Manaa, and K.H. Bowen, J. Chem. Phys. **91**, 3792 (1989). - 5. G. Ganteför, M. Gausa, K.H. Meiwes-Broer, and H.O. Lutz, Z. Phys. D 9, 253 (1989). - 6. S. Yang, K.J. Taylor, M.J. Craycraft, J. Conceicao, C.L. Pettiette, O. Cheshnovsky, and R.E. Smalley, Chem. Phys. Lett. 144, 431 (1988). - 7. D.W. Arnold, T.N. Kitsopoulos, and D.M. Neumark, (to be published) - 8. T.N. Kitsopoulos, I.M. Waller, J.G. Loeser, and D.M. Neumark, Chem. Phys. Lett. **159**, 300 (1989). - 9. G. F. Gantefor, D. M. Cox, and A. Kaldor, J. Chem. Phys. 94, 854 (1990). - 10. T.N. Kitsopoulos, C.J. Chick, Y. Zhao, and D.M. Neumark, J. Chem. Phys. (1991) to appear. - 11. K. Muller-Dethlefs, M. Sander, and E. W. Schlag, Z. Naturforsch. 39a, 1089 (1984). - 12. J.R. Heath, A.L. Cooksy, M.H.W. Gruebele, C.A. Schmuttenmaer, and R.J. Saykally, Science 244, 564 (1989). - 13. P.F. Bernath, K.H. Hinkle, and J.J. Keady, Science **244**, 562 (1989). - 14. N. Moazzen-Ahmadi, A.R.W. McKellar, and T. Amano, J. Chem. Phys. 91, 2140 (1989). - 15. K.S. Pitzer and E. Clementi, J. Am. Chem. Soc. 81, 4477 (1959). - 16. K. Raghavachari and J. S. Binkley, J. Chem. Phys. **87**, 2191 (1987). - 17. G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York 1979). - 18. J. A. Pople, H. B. Schlegel, R. Krishnan, D. J. DeFrees, J. S. Binkley, M. J. Frisch, R. A. Whiteside, R. F. Hout, and W. J. Herhe, Int. J. Quantum Chem. Symp. 15, 269 (1981). - 19. K. Raghavachari, private communication. - 20. Actually, the degeneracy of this mode is split slightly because of the $\Pi$ electronic state; the value given is the average. - 21. Reference 17, p. 159. - 22.P.S.H. Bolman, J.M. Brown, A. Carrington, I. Kopp, and D.A. Ramsay, Proc. R. Soc. Lond. A 343, 17 (1975). - 23. J.W.C. Johns, Can. J. Phys. 39, 1738 (1961). - 24. E.A. Rohlfing and J.E.M. Goldsmith, J. Opt. Soc. Am. B 7, 1915 (1990); F.J. Northrup and T.J. Sears, J. Opt. Soc. Am B 7, 1924 (1990). - 25. G. Herzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, New York 1979). - 26. K.J. Reed, A.H. Zimmerman, H.C. Andersen, and J.I. Brauman, J. Chem. Phys. 64, 1368 (1976). - 27. G. Pacchioni and J. Koutecký, J. Chem. Phys. 88, 1066 (1988). - 28. L. Adamowicz, Chem. Phys. Lett. 180, 466 (1991). ## Table Caption : **Table I**: Listed are the positions for the assigned peaks observed in band **X**, in the spectrum of Fig. 1. The uncertainty in the peak position is $\pm$ 10 cm<sup>-1</sup>. Table I: | Peak | Position (cm <sup>-1</sup> ) | $C_5 \leftarrow C_5^-$ Transition Assignment | |-----------------|------------------------------|------------------------------------------------------------------------------------------| | a <sub>2</sub> | 22,903 | ${}^{1}\Sigma_{g}^{+}(v_{7}'=1) \leftarrow {}^{2}\Pi_{3/2}(v_{7}"=1)$ | | $\mathtt{a}_1$ | 22,925 | ${}^{1}\Sigma_{g}^{+}(v_{7}'=1) \leftarrow {}^{2}\Pi_{1/2}(v_{7}"=1)$ | | A <sub>2</sub> | 23,997 | $^{1}\Sigma_{q}^{+}(v'=0) \leftarrow ^{2}\Pi_{3/2}(v''=0)$ | | ${\mathtt A}_1$ | 22,019 | ${}^{1}\Sigma_{q}^{+}(v'=0) \leftarrow {}^{2}\Pi_{1/2}(v''=0)$ | | b | 23,139 | ${}^{1}\Sigma_{g}^{+}(v_{7}'=3) \leftarrow {}^{2}\Pi_{u}(v_{7}"=1)$ | | В | 23,231 | ${}^{1}\Sigma_{g}^{+}(v_{7}'=2) \leftarrow {}^{2}\Pi_{u}(v_{7}"=0)$ | | С | 23,451 | ${}^{1}\Sigma_{g}^{+}(v_{5}'=2) \leftarrow {}^{2}\Pi_{u}(v_{5}"=0)$ | | D <sub>2</sub> | 23,641 | ${}^{1}\Sigma_{g}^{+}(v_{7}'=2,v_{5}'=2) \leftarrow {}^{2}\Pi_{3/2}(v_{7}''=0,v_{5}'=0)$ | | D <sub>1</sub> | 23,663 | ${}^{1}\Sigma_{g}^{+}(v_{7}'=2,v_{5}'=2) \leftarrow {}^{2}\Pi_{1/2}(v_{7}''=0,v_{5}'=0)$ | | E <sub>2</sub> | 23,777 | ${}^{1}\Sigma_{g}^{+}(v_{2}'=1) \leftarrow {}^{2}\Pi_{3/2}(v_{2}"=0)$ | | E <sub>1</sub> | 23,798 | ${}^{1}\Sigma_{g}^{+}(v_{2}'=1) \leftarrow {}^{2}\Pi_{1/2}(v_{2}"=0)$ | | F | 24,089 | ${}^{1}\Sigma_{g}^{+}(v_{6}'=2) \leftarrow {}^{2}\Pi_{u}(v_{6}"=0)$ | # Figure caption : - 1a. (Top). The threshold photodetachment spectrum of $C_5^-$ generated in a helium expansion. - **1b.** (Bottom). A section of the threshold photodetachment spectrum of ${\rm C_5}^-$ generated in a neon expansion. Frg. 1